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This paper proposes a multiobjective layout optimization method for the conceptual design of robot cel-
lular manufacturing systems. Robot cellular manufacturing systems utilize one or more flexible robots
which can carry out a large number of operations, and can conduct flexible assemble processes. The lay-
out design stage of such manufacturing systems is especially important since fundamental performances
of the manufacturing system under consideration are determined at this stage. In this paper, the design
criteria for robot cellular manufacturing system layout designs are clarified, and objective functions are
formulated. Next, layout design candidates are represented using a sequence-pair scheme to avoid inter-
ference between assembly system components, and the use of dummy components is proposed to rep-
resent layout areas where components are sparse. A multiobjective genetic algorithm is then used to
obtain Pareto optimal solutions for the layout optimization problems. Finally, several numerical exam-
ples are provided to illustrate the effectiveness and usefulness of the proposed method.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Robotic cellular manufacturing systems (RCMSs) are a new type
of manufacturing system in which one or more flexible robots
carry out a large number of assembly operations that would be
performed by human workers in conventional cellular manufactur-
ing systems. When compared with conventional human cellular
manufacturing systems, RCMS are seen to offer similar advantages,
such as reduction of material flow distances and local inventory.
However, although reduced operation costs due to automation of
the manufacturing systems can be achieved by introducing RCMS,
the design of assembly operations and robot teaching can become
quite awkward and time-consuming when launching new manu-
facturing systems.

As with all manufacturing systems, the layout design stage,
where fundamental performances of the manufacturing system
under consideration are determined, is one of the most important
stages when building efficient RCMS. The layout design stage is an
upstream stage of the manufacturing system design process, and
decisions made then exert considerable influence on the detailed
design of robot motion planning and the teaching process. There-
fore, skillful decision-making during the layout design stage is
essential for minimizing design changes during the detailed design
stage and teaching process, and to enhance the efficiency and reli-
ability of the manufacturing systems when deployed.
With this background in mind, optimization techniques have
been applied to assist the layout design of RCMS (Tay & Ngoi,
1996; Barral, Perrin, Dombre, & Liegeois, 2001). Unfortunately,
these methods require explicit constraint handling regarding com-
ponent overlapping, since component coordinates are handled as
design variables, and this implementation obstructs global search-
ing of the solution space.

Layout problems have raised important issues in many research
fields, such as printed circuit board problems (Shahookar &
Mazumder, 1991) and facility layout problems (Drira, Pierreval, &
Gabouj, 2007; Gen, Lin, & Zhang, 2009), and effective optimization
methods which can avoid the handling of overlapping constraints
have been reported. For example, Kleinhans, Sigl, Johannes, and
Antreich (1991), Quinn and Breuer (1979), and Dunlop and Kerni-
ghan (1985) proposed multi-step optimization techniques. In these
methods, several component overlaps are allowed in the first opti-
mization step, and such overlaps are subsequently resolved. How-
ever, the overlap resolution step may degrade solutions and
optimization computational requirements tend to be significant.
Tree-structure representation techniques (Dai & Kuh, 1987; Chen
& Chang, 2006) are very effective for avoiding overlaps, but these
methods can be applied only to partitioning problems. Birgin and
Lobato (2010) proposed a rectangular packing technique which
avoids overlapping, however this technique assumes that all rect-
angles have an identical shape.

On the other hand, sequence-pair representation can avoid
overlaps among components and allow various sizes of rectangles
(Murata, Fujiyoshi, Nakatake, & Kajitani, 1996). Several papers
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report that this representation enables very effective layout
optimization in packing-type problems (Drakidis, Mack, & Massara,
2006) and facility layout problems (Meller, Chen, & Sherali, 2007;
Liu & Meller, 2007). Therefore, this paper proposes a new layout
optimization method for RCMS that uses sequence-pair represen-
tation. The major difference between RCMS layout problems and
conventional packing-type or general facility layout problems is
that the minimization of packing area is the most important crite-
rion in the former, but optimal spacing among distributed compo-
nents is paramount in the latter. This paper proposes a dummy
component approach to provide such spacing between a single ro-
bot and other components. In the following section, the design
requirements for the RCMS are clarified first and then quantitative
design criteria are formulated. Next, a sequence-pair representa-
tion scheme for layout optimization is introduced and an optimiza-
tion procedure is proposed. Finally, the proposed optimization
method is applied to numerical examples to demonstrate the effec-
tiveness of the proposed method.

2. Criteria for layout design

2.1. Layout design problem

The most important consideration when developing new man-
ufacturing systems is operation time, and Tay and Ngoi (1996) and
Barral et al. (2001) proposed single-objective layout optimization
algorithms for minimizing RCMS operation time. However, during
the layout design stage, multiple design requirements must be
considered, so single-objective optimization approaches are insuf-
ficient in many RCMS design cases. Feasibility verification of
assembly tasks is an essential process in the RCMS layout design
stage. Another highly important consideration is the minimization
of layout area, to enhance the efficiency of factory-level layouts.
The quantitative criteria for these requirements are discussed in
the following subsections.

2.2. Operation time

Consider an RCMS composed of part feeders, an assembly table
and an assembly robot. The total operation time of the RCMS can
be classified into assembly time and robot motion time. Robot mo-
tion time is time spent moving the robot end-effector to retrieve
assemblies or assembly parts and move them to another location,
and the manufacturing system layout greatly influences these
durations, which must be minimized.

However, precise evaluation of robot motion time is almost
impossible in the layout design stage where no detailed motion
trajectory information is given. Therefore, we evaluate robot mo-
tion time based on the rotational angle of robot arm joints between
starting and terminal points for each robot motion. Since the max-
imum angular velocity value of each assembly robot joint is usually
given at the layout design stage, we approximately calculate the
robot motion time by assuming that the joint motion has a uniform
velocity based on its maximum angular velocity. Hence, the robot
motion time Ti

k of the kth joint performing the ith motion is given
in the following equation:

Ti
k ¼

�qi
k

�� ��
xk

ð1Þ

where xk indicates the maximum angular velocity of the kth joint
and �qi

k is the angle through which the kth joint moves during the
ith motion.

We assume that all joints can simultaneously have their angle
changed, and the ith motion time is evaluated using the maximum
joint motion time as follows:
Ti ¼ max
k

�qi
k

�� ��
xk

" #
ð2Þ

Therefore, the total robot motion time for one assembly cycle T is
evaluated as follows:

T ¼
Xh

i¼1

Ti ð3Þ

where h is the number of robot motions in one assembly cycle.

2.3. Feasibility of assembly tasks

In RCMS, robots must conduct skilled assembly tasks. This
means that having a robot arm reach appropriate task positions
is only one of the necessary conditions required to conduct an
assembly task, but not a sufficient condition alone. If the robot pos-
ture at a task position is close to a singular point, the assembly task
may not be successfully completed. Therefore, consideration of
how to avoid such singular points at the layout design stage is
essential for obtaining a feasible assembly process.

In order to avoid singular points, evaluation of kinematic
manipulability (Yoshikawa, 1985) is beneficial. Manipulability is
a quantitative measure of the manipulating ability of robot arms
that can be calculated based on the relationship among the posi-
tion of the end-effector and joint vectors.

Consider a manufacturing system using an n degree-of-freedom
assembly robot which conducts tasks at h positions, with its kth
joint variable at the jth task position denoted as qj

k, with joint vec-
tor qj. The robot posture vector rj at the jth position (j = 1, 2, . . ., h)is
defined as follows:

qj ¼ ½qj
1; q

j
2; . . . ; qj

n�
T ðj ¼ 1;2; . . . ;hÞ ð4Þ

rj ¼ ½rj
1; r

j
2; . . . ; rj

m�
T ð5Þ

where m is the number of dimensions needed to represent the posi-
tion and angle of the end-effector. Then, the relationship between rj

and qj is represented as follows:

rj ¼ f ðqjÞ ð6Þ

In the following discussion, the notation of task position j is ig-
nored for simplicity. By the chain-rule, velocity vector vð¼ _rÞ is ob-
tained as,

v ¼ JðqÞ _q ð7Þ

where _q indicates the joint velocity vector and JðqÞ is the Jacobian.
Consider subset Sv of the realizable velocity v such that the cor-

responding joint velocity _q satisfies

_q ¼ _q2
1 þ _q2

2 þ � � � þ _q2
n

� �1=2
6 1 ð8Þ

This subset is an m dimensional Euclidean ellipse and its volume V
is

V ¼ cmw ð9Þ

where the coefficient cm is

cm ¼
ð2pÞ

m
2

2�4�6���ðm�2Þ�m if m is an even

2ð2pÞ
m�1

2

1�3�5���ðm�2Þ�m if m is an odd

8><
>: ð10Þ

Since cm is a constant value, the volume of the ellipse can be
evaluated by w which is referred to as a manipulability measure
(Yoshikawa, 1985). The larger the manipulability w, the faster
the end-effector can move in any direction, implying that larger
manipulability values of w indicate that the robot can conduct more
complicated tasks. Therefore, we calculate the value of w here to
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evaluate the feasibility of the assembly tasks. In the case of non-
redundant robots, w is calculated as follows:

w ¼ jdetJðqÞj ð11Þ

Therefore, using the superscript of task position j, the overall
feasibility of assembly task W in a robotic cellular manufacturing
system is evaluated using the weighted summation of manipula-
bility values at h task positions, as follows:

W ¼
Xh

j¼1

ajwj ð12Þ

where wj is the manipulability at the jth task position and aj denotes
a weighting coefficient.

2.4. Layout area

Layout area is an important design criterion when designing
new assembly lines (Sherali, Fraticelli, & Meller, 2003). In this pa-
per, every manufacturing system component is assumed to be rect-
angular, and layout area S is evaluated using the area of the
smallest rectangle which can contain all allocated components,
as shown in Fig. 1.

2.5. Optimization problem

Using the above three design criteria for the RCMS layout, a
multiobjective optimization problem for its design can be formu-
lated as follows:

minimize T; S

maximize W

�
ð13Þ

If one or more task positions like beyond the working envelope of a
robot, a very large penalty value is assigned to each objective
function.

Another constraint condition for this optimization problem is to
avoid overlapping among components and to handle this con-
straint, and a sequence-pair representation scheme is introduced
in the following section.

3. Layout representation scheme

3.1. Sequence-pair

RCMS layout problems can be regarded as allocation optimiza-
tion problems for manufacturing system components of various
sizes. One intuitive approach for solving such optimization prob-
lems is to handle the coordinates of each component as design
variables and use local optimization techniques, however, such ap-
proaches involve complicated handling of constraints regarding
overlapping among the components. The sequence-pair represen-
tation approach can avoid a constraint resolution process for
overlapping constraints, since the native representation inherently
prohibits overlaps. This paper employs this scheme to represent
the layout of RSMS components.

The sequence-pair approach employs a pair of sequences, C+

and C�, where each sequence indicates the relative positions of
manufacturing system components. Furthermore, in this paper,
an additional variable, hl (l = 1, 2, . . . , L), is introduced to represent
the orientation of each allocated rectangular component, where l
denotes the component number and L is the total number of com-
ponents. Since we assume that all components are rectangular,
their orientation, i.e., long side vertical or long side horizontal, is
represented by hl e {0, 1}.
3.2. Decoding procedure

Layouts represented by a sequence-pair can be decoded using an
oblique grid. For example, in the case of C+ = {cdebfa}, C� = {dfecab},
these two permutations, C+ and C�, represent relative positions of
components on the oblique grid as shown in Fig. 2, where the se-
quences of the two grid line labels are the same as the permutations,
C+ and C�. That is, the label sequence from upper-left to lower-right
is the same as C+ and the label sequence from lower-left to upper-
right is the same as C�. Furthermore, components are located at
the intersection of the two corresponding component grid lines.

Next, two directed and vertex-weighted graphs, horizontal and
vertical constraint graphs, are constructed as shown in Fig. 3. In the
horizontal constraint graphs, two components are connected when
one component is to the left of another component in the both se-
quences. Components in the vertical constraint are connected
when a component letter label is to the left of the other component
letter label in C+ and, correspondingly, to the right in C�. The posi-
tion of each component is then calculated by solving the longest
path problem, considering the orientation of the components indi-
cated by hl. Consequently, a layout is obtained as shown in Fig. 4.
See the reference (Murata et al., 1996) for details of the procedure.
3.3. Representation of distance between components

Since the sequence of letter labels in the sequence-pair ap-
proach represents the relative position of components, the space
between components is not considered. Thus, sequence-pair repre-
sentation has been applied to packing problems such as VLSI de-
sign, where the packing area of components is to be minimized
(Drakidis et al., 2006). However, RCMS layout design problems
must consider the inclusion of adequate space between compo-
nents, since robot manipulation requires certain minimal distance
from task points to allow complex assembly tasks to be conducted
at these points.
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This paper proposes the use of dummy components to repre-
sent such spaces in RCMS layout problems. Several rectangular
dummy components are introduced in an optimal layout design
problem, and layout of both ordinary and dummy components is
simultaneously optimized. Consequently, dummy components
are allocated at places where space is required, allowing layout
optimization considering the spacing requirements of employed
robots.

4. Optimization method

4.1. Genetic algorithm

The proposed layout optimization problem has permutation
variables which represent the relative position of components,
and binary variables which represent the orientation of rectangular
components. Branch-and-bound algorithms (Solimanpur & Jafari,
2008; Xie & Sahinidis, 2008) may provide a global optimum solu-
tion, but the problem size must be small due to combinatorial
explosion. The use of meta-heuristic approaches such as genetic
algorithms (GAs) (Liu & Meller, 2007; Solimanpur & Kamran,
2010), particle swarm optimization (Samarghandi, Taabayan, &
Jahantigh, 2010), simulated annealing (Sahin, Ertogral, & Turkbey,
2010) and an ant system (Komarudin & Wong, 2010) are effective
for solving large-scale combinatorial optimization problems, and a
further advantage is that GAs can provide non-dominated solu-
tions for multiobjective optimization problems. Therefore, this pa-
per uses a GA to solve the RCMS layout problems and the following
sections describe its crossover, mutation and selection operators.

4.2. Crossover

This paper utilizes Placement-based Partially Exchanging Cross-
over (PPEX) (Nakaya, Wakabahashi, & Koide, 2000). In PPEX, a pair
of individuals is first chosen, one component in one individual of
the pair is then selected at random, and a window domain is cre-
ated around this component. The sequence and orientation of com-
ponents inside this window is exchanged with those in the other
individual.

An example of the PPEX procedure is described in Figs. 5 and 6.
Fig. 5 shows the window domain around component ‘‘e’’, indicated
by the gray area. The sequence and orientation of components ‘‘c’’,
‘‘d’’, ‘‘e’’ and ‘‘f’’ are inherited from Parent 2 and the sequence and
orientation of components ‘‘a’’ and ‘‘b’’ are inherited from Parent 1.

4.3. Mutation

A mutation operator is applied to a component at a preassigned
mutation probability. When the mutation operator acts on a com-
ponent, another component in the same individual is chosen at
random. The sequence of these two components in permutations
C+ and C� are then exchanged and the orientation of hl of these
two components is changed.



Table 1
Cellular manufacturing system components.

Machine ID (Machine
name)

Size (height, width)
(mm)

Number of
operations

0 (Robot) (255, 255) –
1 (Assembly Table) (270, 188) 10
2 (Part box 1) (150, 100) 2
3 (Part box 2) (150, 100) 2
4 (Part box 3) (150, 100) 2
5 (Part box 4) (150, 100) 1
6 (Part box 5) (150, 100) 1
7 (Part box 6) (150, 100) 1
8 (Part box 7) (150, 100) 1
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4.4. Selection

The layout design optimization problem proposed in this paper
is a multiobjective optimization problem regarding robot motion
time, manipulability and layout area. Typical ways to solve multi-
objective optimization problems include the use of the weighted
sum method or �-constraint method, which converts a multiobjec-
tive optimization problem to a single objective optimization
problem. However, adjustment of weighting coefficients for the
weighted sum method, or determination of the constraint thresh-
old for the �-constraint method requires an awkward trial-and-
error process. Therefore, in this paper, Non-dominated Sorting
Genetic Algorithm (NSGA)-II (Deb, Pratap, Agarwal, & Meyarivan,
2002), a multiobjective optimization technique based on GA, is
used. NSGA-II can provide a non-dominated solution set for a
multiobjective optimization problem in a single computation.
The obtained non-dominated solution set provides trade-off infor-
mation among the objective functions.

In the NSGA-II selection scheme, non-dominated solutions are
preserved and carried over into the next generation, and a crowd-
edness criterion is used to select non-dominated solutions existing
in sparsely distributed areas, to obtain widely distributed non-
dominated solutions.
5. Numerical examples

5.1. Problem settings

The proposed RCMS layout design method is applied to example
problems using several parameter settings. The assembly robot
used in the following problems is shown in Fig. 7 and Table 1
shows the sizes and number of operations required of the layout
components. The number of operations means the number of times
the robot goes to the corresponding part box and then returns to
the assembly table. This means that the robot effector retrieves a
part from a particular part box location and returns to assembly ta-
ble, and repeats this operation for the listed number of operations
during the assembly task.

The number of individuals, the terminal generation number,
cross-over rate and mutation rate are set to 80, 10,000, 0.8 and
1/2L, respectively, where L is the number of components including
dummy components. The optimization calculation was conducted
five times for each problem setting, and only the non-dominated
solutions of the five optimization calculations are shown in the
figures.
280
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Fig. 7. Assembly robot configurations.
5.2. Effectiveness of dummy components

First, optimization problems considering only two objective
functions are solved in order to compare the optimization perfor-
mance for different problem settings, since a planer distribution
of non-dominated solutions is easy for performance evaluation.
The example problems in this and the following sections consider
robot motion time T and manipulability W, while layout area S is
ignored.

Fig. 8 shows the non-dominated solutions obtained using the
proposed optimization method in two cases, one where no dummy
components were used and the other where 13 dummy compo-
nents were used. In this problem, all dummy components are
square and 90 mm on a side. Twelve solutions were obtained in
the case when dummy components were not used, while six solu-
tions were obtained when dummy components were used.

The layout of solutions A–C in Fig. 8 are shown in Figs. 9–11.
The numbers inside the rectangles in the figures indicate the com-
ponent number shown in Table 1, and gray squares in Fig. 11 indi-
cate the dummy components.

Fig. 8 clearly shows the trade-off relationship between robot
motion time and manipulability, namely, larger manipulability re-
quires longer robot motion time and shorter robot motion time can
be achieved at the cost of less manipulability. Fig. 8 also shows that
superior solutions regarding manipulability are obtained in the
case when dummy components are used. As a result, we observe
that superior optimization performance is possible when dummy
components are included.

Solution A obtained in the no dummy component case is supe-
rior concerning robot motion time, but inferior in manipulability.
This feature of solution A can be understood from Fig. 9, which
shows the component layout. Part boxes, components 2–10, are lo-
cated around the assembly table, component 1, so robot motion
time between the components and the assembly table can be
shortened. However, since components 4, 6 and 8 are too close
to the robot, component 0, manipulability for these components
is quite low.

Solution B is the best solution regarding manipulability in the
no dummy component case, but worse in terms of robot motion
time. The component layout for solution B is shown in Fig. 10. Sev-
eral components are located far from the robot, component 0,
which enhances manipulability at these locations. These figures
show that component overlapping does not occur, and appropriate
and understandable solutions are obtained using the proposed
optimization method. However, the positions of components 7
and 8 in solution B are too close to the robot and ruin the manip-
ulability for this solution. Thus, the use of dummy components is a
practical necessity.

Fig. 11, the layout of solution C obtained when using dummy
components, shows that the assembly table and part boxes are lo-
cated at appropriate distances from the robot, due to the interces-
sion of dummy components, so that manipulability is preserved for
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all parts boxes. This result further illustrates the necessity of using
dummy components for sequence-pair based RCMS layout
optimization.

5.3. Size of dummy components

Next, the effect of the size of dummy components on optimiza-
tion results is discussed. Fig. 12 shows non-dominated solutions in
three cases where the edge length a of 13 square dummy compo-
nents is set to 30 mm, 90 mm and 150 mm, respectively.

From this figure, we observe that the 30 mm square dummy
components fail to provide high manipulability compared with
the 90 mm case, since 30 mm is too small. In the 150 mm square
dummy component case, compromised solutions having shorter
robot motion time and larger manipulability are inferior to the
90 mm case. These comparative results imply that an adequate size
of dummy components is required to obtain better solutions, how-
ever, prediction of the most appropriate size prior to optimization
calculation is a challenging issue.

Next, 13 rectangular dummy components having various edge
lengths as shown in Table 2 are used. Non-dominated solutions
for these cases are shown in Fig. 13 and compared with the
90 mm square dummy component case.

Fig. 13 shows that the use of rectangular dummy components
can provide better non-dominated solutions than square dummy
components. Fig. 14 shows the component layout of solution D
in Fig. 13, where dummy components having appropriate edge
lengths were selected. This result shows that the use of rectangular
dummy components having various edge lengths can be effective
when the most appropriate size is unknown.
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Table 2
Dummy component sizes.

Dummy ID Height (mm) Width (mm)

9 60 70
10 70 80
11 80 90
12 100 110
13 120 130
14 60 70
15 70 80
16 80 90
17 100 110
18 60 70
19 70 80
20 80 90
21 100 110
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5.4. The number of dummy components

In this section, we discuss the effect of the number of dummy
components. The optimization result shown in Section 5.3, where
13 rectangular dummy components Nd are included, illustrates
that some of the 13 dummy components in this layout are unnec-
essary. That is, the same layout can be represented using fewer
dummy components, and the inclusion of several irrelevant dum-
my components does not negatively affect the obtained optimal
layout. Therefore, this layout representation scheme has a certain
level of robustness against the parameter setting for the number
of dummy components. We now compare this result with the re-
sults where Nd is set to 5 or 25.
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Fig. 15. Non-dominated solutions when different numbers of dummy components
are used.
The rectangular dummy components, from No. 9 to No. 13, are
used in the Nd = 5 case. In the Nd = 25 case, two dummy compo-
nents are used for each component from No. 9 to No. 20, and a sin-
gle additional No1. 21 dummy component is used. The obtained
non-dominated solutions are shown in Fig. 15. This figure illus-
trates that solutions having higher manipulability but inferior
operation times are obtained when Nd is increased. These compar-
ative results clarify that the optimization problem become very
complex when Nd has a large value, since the number of design
variables increases. Conversely, when Nd is a small number, supe-
rior solutions regarding operation time are obtained, but they
are inferior in terms of manipulability. These results indicate that
the number of components, Nd, should be carefully determined,
since this parameter affects the outcome of the optimization re-
sults. Therefore, how to determine an appropriate parameter for
the number of dummy components prior to optimization is one
of the key research issues we hope to address in future work.

5.5. Three-objective optimization problem

Finally, the proposed layout optimization method is applied to
three objective optimization problems considering robot motion
time, manipulability and layout area. This example uses the same
settings as the two-objective optimization case discussed above
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Fig. 17. Non-dominated solutions mapped to the layout area-manipulability plane.



0

1

2

3

5
7 8

0
46

Fig. 18. Layout of solution E.

0 1

2

7 8

45

6

3

Fig. 19. Layout of solution F.

544 K. Izui et al. / Computers & Industrial Engineering 64 (2013) 537–544
regarding the robot configuration, the number and size of rectan-
gular dummy components and genetic algorithm parameters.

The distribution of the obtained non-dominated solutions is
shown in Fig. 16 where trade-off relationships among the three
objective functions can be observed. The trade-off relationship be-
tween layout area and manipulability is especially significant, as
shown in Fig. 17.

The layouts of two solutions indicated by black circles are illus-
trated in Figs. 18 and 19. Fig. 18 shows the layout of solution E,
which has the smallest layout area among the non-dominated
solutions. Fig. 19 shows the layout of compromise solution F which
has reasonable performance values for every criterion. These fig-
ures also imply the existence of a trade-off relationship between
layout area and manipulability. That is to say, a smaller layout area
reduces manipulability since the robot arm must undergo more
radical movements during assembly operations. Thus, an adequate
layout area is necessary to obtain sufficient manipulability.

6. Conclusions

This paper proposed a new layout optimization method for
RCMS. First, the design requirements for RCMS layouts were
clarified. Robot motion time, manipulability and layout area, were
proposed as design criteria and an optimization problem was for-
mulated. A sequence-pair scheme was introduced for the RCMS
layout representation to avoid overlapping among assembly
system components during the optimization procedure. Further-
more, the use of dummy components was proposed, to enhance
obtaining solutions that have optimal spacing between compo-
nents. A genetic algorithm was used to solve the multiobjective
combinatorial optimization problems. A PPEX-type operator was
used for crossover of sequence-pair chromosomes and NSGA-II
was used to obtain non-dominated solutions. The proposed meth-
od was applied to numerical examples, and its effectiveness was
demonstrated. Moreover, a simple guide for determining appropri-
ate dummy component sizes was proposed, based on the results of
several parameter studies.
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