問題発見型/解決型学習(FBL/PBL) テーマ提案(学生募集内容)

Foreign Language Education++		
Design Unit Specific Assistant Professor NITSCHKE, CHRISTIAN		
The field of IT is rapidly changing from the days when computers were professional and complex devices operated by experts. Key factors of this development are: • increasing processing power at decreasing size and price; • increasing I/O capabilities through sensors (touch, camera, microphone, GPS, gyroscope, accelerometer, etc.), novel displays (3D, head-mounted, etc.) and communication channels (3G/LTE, WIFI, NFC/Bluetooth, etc.); and • increasing number and appearance of computing devices. This leads to a paradigm change from desktop to ubiquitous computing (using any device, in any location, in any format) and ambient intelligence in electronic environments that are sensitive and responsive to the presence of people. As IT enters all areas of life to solve a broad range of problems, the field itself becomes highly interdisciplinary. Designing future technology requires not only excellent engineering but more and more knowledge of the application domain and usage scenarios. Regarding this, Kyoto University's Collaborative Graduate Program in Design provides an ideal opportunity to learn how to identify and solve such complex problems with a diverse team of professionals. With the VR (virtual reality) system at KRP: we have an ideal environment to study, design and experiment with new technology and user interaction concepts to create an immersive simulated reality.		

Figure 3: The ICIE at KRP and two similar setups at Yoshida campus can be operated in parallel for remote multi-user and tele-presence applications, such as remote meetings.

Figure 4: The shows participants at the two ICIE setups at Yoshida campus, in a live demonstration of remote meeting and joint guided tour to Arashiyama, conducted at the visit of Prof. Makoto Nagao (<u>http://ja.wikipedia.org/wiki/長尾真</u>), the former President of Kyoto University and Director of the National Diet Library of Japan, to KRP at December 16, 2013. In this system, the video of remote parties is captured, segmented, network-transmitted and geometrical-consistently displayed to allow for joint attention and referencing. Access https://youtu.be/GD4XIH_nOyo for the video of the demonstration.

To get a better understanding of the immersive environment that we will use in this course, please visit the Youtube-channel of Nishida Laboratory:

https://www.youtube.com/user/KyotoUniNishidaLab,

where you can find demonstrations on natural interaction in virtual environments and research in communication analysis between humans and avatars. Especially recommended are the following examples:

 Navigation and interaction in remote real environments – in a 3D-reconstructed model of Yoshida campus (<u>https://youtu.be/68UrJv65HvY</u>) or at any place in the world supported by Google Street View (<u>https://youtu.be/V-9SKpcMrzk</u>). An extension of the latter system

allows three participants, located at the three ICIE installations at KRP and Yoshida campus, to gather in a shared remote environment for a real-time meeting supporting communication and interaction. This can provide the basis to implement and study education tasks (<u>https://youtu.be/GD4XIH_nOyo</u>) (Figures 3, 4).

Interaction and navigation in virtual environments.
 A demo of our TA Divesh's Master course research (<u>https://youtu.be/_oNXTq5LtVk</u>)

demonstrates how a virtual environment is visualized on the 360° panoramic display, how the user controls the avatar's walking motion with the pressure-sensitive foot-mat and the avatar's body motion using Kinect motion capture, and how the system supports multiple users in different environments over a network. Another video

(https://youtu.be/ZtjSRjHBgUs) demonstrates a first prototype of the "Virtual Basketball"

environment to conduct a part of Divesh's Doctors course research on understanding human-human non-verbal communication in a virtual environment, with the aim to improve human-avatar communication. The video shows picture-in-picture: the virtual environment, and two remote users

controlling their player avatars to dribble, pass, and shoot the ball.

Overview	In this PBL, we want to address the problem of foreign language (and culture) education. As the
	philosopher Wittgenstein suggests, the meaning of language is defined by its use. Regarding the
	foreign language learning environment, it implies that the learner needs to learn a language as an
	association between the linguistic expressions and the situations in which they are used.
	Unfortunately, the common educational practice lacks the situation and usage parts.
	Unfortunatery, the common educational practice facks the situation and usage parts.
	Our solution approach should be technical, inspired by the potential and challenges of
	technologic progress. This also contributes to the broader problem, of defining how technology
	(that will certainly come) should be used in a way to improve individual lives and future society.
	Therefore, the '++' in the PBL title stands for the technical approach and a future/next step in
	foreign language education (following the notation of incrementation in several programming
	languages). It further expresses a double value for creatively applying technology and solving a
	practical real-world problem.
	Specifically, we want to analyze if and how immersive environments can be of a merit. For
	example, to connect people at different places in the world through remote meeting, to create
	situation contexts through simulation, to provide more effective education planning and quality
	measuring using data from various sensors, and to increase motivation through richness and
	effectiveness.
	The problem provides potential for an equal contribution of different disciplines. Depending on
	the participants, we want to elaborate a problem definition and solution strategy, where everyone
	can bring in their expertise. For example:
	• Architects may want to think about where and how such technology could be found in the
	future, how education context could look like, where education situations may happen.
	• Education experts may bring in theoretic background behind current education, and discuss
	improvements for the future, considering the expected development of education needs,
	situations and tools. What is beneficial to increase the efficiency of education, in a broad
	sense, including learning rate, applicability, longevity, learner/teacher satisfaction, etc. How
	about life-long learning and situations beyond school education?
	• Engineers may think about the technical realization, discuss current limitations and their
	realistic and unrealistic expectation on future development.
	• Medical experts and psychologists may bring in their knowledge to design ways on how to
	assess the situation using biomedical sensors (measuring for example physiological/mental
	state, cognitive load and stress, cultural background, character and behavior) and how this can
	give a feedback and improve the education process.
	The PBL will cover the following four phases:
	1. Technical introduction
	It is important to understand the potential and challenges behind the technology in order to start
	designing something new and, therefore, we want to study the available technology in the VR
	booth through lectures and interactive tryouts.
	2. Application scenario design
	Based on this, we want to have a general discussion on the feasibility and design issues related to
	potential application scenarios, such as

	 Education: teaching, training and testing of skills; Work: remote collaboration; simulation and modeling; control of machines and robots; Life support: for elderly, disabled; Entertainment: games, remote navigation (walk, drive, flight simulator); Medicine: remote consultation and assessment from sensor data; Research: computational analysis of multi-modal sensor data in physiology, psychology, behavior science, social science, etc. This will design a deeper and bigger aspect of the technology and go beyond the application of current computing technology.
	3. Foreign language learning problem We will analyze the current situation of foreign language education in Japan, identify general problems and develop improvement strategies. Continuing in the scope of this PBL, we want to assess the potential of situation-based learning, create a problem definition and design a technically feasible solution concept. The main focus is to develop a big idea emerging from the different disciplines. Finally, we want to create a simple specific realization of a situation-based communication example or particular components that are most interesting and important to the participants.
	4. Retrospection The realized problem solution is only a part of the course. The other part is to experience the process of interdisciplinary designing a complex technical system. This final phase of the course will contain two parts: First, we want to evaluate the foreign language learning problem and solution approach, especially discussing limitations of the technology and issues of the interdisciplinary approach. Then, we want to become more general and expand the discussion towards the whole course, and ask what lessons we learn for the future.
Place	KRP Building #9, Room 506, Flexible Space / Virtual Reality System Booth
Conditions for participation	Nothing in particular. Remarks: 1. Background and skills
	The goal of last spring term's PBL proposal was to develop a sophisticated multi-player basketball game. After meeting and discussing with students, it turned out to be difficult to focus only on the software engineering and programming aspect. Therefore, the goal of this PBL is broader, aiming to solve a "real-world" problem in education and identify questions and design solutions related to technology. The focus now lies on problem solving in an interdisciplinary environment.
	2. English ability The course will be held in English. However, interested participants are especially encouraged to <u>not reject this course because of English skills</u> . The level and usage of English will be flexibly adjusted based on the level of the participants, and will not count for grading the course. The aim is to create a comfortable atmosphere for the use of English, to enable the access of globally available resources.
Number of	Min: 3
participants	Max: 8
Application	May 2 (Friday)

deadline					
Target	Anyone motivated and interested in the topic, especially				
participants	• undergraduate, graduate students, members of Kyoto University;				
	• undergraduate, graduate students, members of universities and institutes;				
	• engineers, researchers, general members of companies.				
	However, if the number of applicants exceeds the maximum, priority will be given to Design				
	School students.				
How to apply	(To program students and candidates: follow the instruction at the orientation)				
	By email, including the following:				
	To: christian.nitschke@i.kyoto-u.ac.jp				
	CC: fblpbl-application@design.kyoto-u.ac.jp				
	Subject: [FBL/PBL 参加申込] Foreign Language Education++				
	Mail body text: name, organization, position/school year, email address, web page, background				
	knowledge and field of specialization, course topic name, motivation for course application, and				
	other information				
Decision of	By email, until May 9 (Friday)				
participants					
Design	Hard skills:				
theories and	Understanding potential and usage of important computation technology				
techniques for	• Design, implementation and evaluation of complex hardware systems				
problem	Practical implementation				
analysis and					
solution	Soft skills:				
finding	Team work and interdisciplinary collaboration				
	• Presentation and discussion				
	• English language and inter-cultural ability (see "Conditions for participation")				
Method for	The course will use the technology available at the virtual reality system booth (see "Topic				
studying	background"), and comprise:				
theories and	• Lectures on technologies, Mixed and Virtual Reality (MR/VR) world design and research				
techniques	Problem and solution finding, discussion				
	• Design and implementation of a prototype or a subproblem				
	Preparation of results for webpage publication				
	Final report and presentation				
	The participants will work together in teams.				
Method for	We will create and maintain a webpage that contains: overview of the course, problems and				
publishing the	solution methods, study progress and results.				
results					
Performance	Comprehension of topic, theories and methods: 50% (observation and report)				
evaluation	• Quality of problem finding and solution design: 20% (observation and report)				
method	• Class activity, contribution in group work, learning beyond expertise: 30% (observation)				
	Attendance requirement: 80% of class time				
Special	Project outcome:				
remarks	• Each participant will independently create a final report (2-3 A4 pages) that summarizes				
	solved problems, progress and results.				
	• Results and materials (presentation/discussion, source code, demo material, documentation)				
	will be made accessible through the webpage and are well prepared to ensure the preservation				

of the knowledge and continuity of the course.
Future plan:
Building on the results of this course, we plan to offer a more research-oriented continuation
course next semester (PBL or Leading Project). Current participants should especially consider
joining that course to study about publication and presentation of their work. The focus is the
following:
Understanding research and publication process
Survey of related research areas and analysis of publication possibilities
Improvement of previous results with goal on publication
Design and implementation of experimental evaluation
Publication of a research paper including the participants names

実施計画

(The class schedule will be decided based on the participant availability before the first meeting.)

Unit	Schedule	Place	Content
1	Mid May	KRP	Introduction lecture
			Motivation and aim of the project
			Outline and organization of the course
			Demonstration of virtual reality system at KRP
			Technology introduction
2-5			Lectures, tutorials, tryouts on technology
			• Multi-display setup, (game) programming with Unity
			Kinect and pressure-pad
			faceLAB and Polymate bio-sensors
	Beginning June		Application scenario design
6-7			Development of application concepts
			Analyze potential for different application areas
			• Design concept and plan for selected application
			Presentation of results
			Foreign language learning problem
8			Analyze topic and situation
			Identify current problems
			Identify potential future problems
9	End June		Development of general solution strategies
10-12			Design of problem and solution regarding situation-based
			learning with immersive environments
			Development of general concept
			Practical implementation of subproblem
			Creation of documentation material
			(videos, screenshots, usage documentation, etc.)
	Beginning July		Retrospection
13			Foreign language learning problem
			Limitations of technology
			• Issues in interdisciplinary approach and solution

14		Whole course
		• Evaluation of course expectations and results
		• Lessons to learn for the future
15		Documentation of results
		• Finalization of materials and upload to webpage
		Submission of project reports
		Final presentation

※KRP: デザインイノベーション拠点(京都リサーチパーク9号館5階)