A Unified Metric for Categorical and Numerical Attributes in Data Clustering

Yiu-ming Cheung and Hong Jia

Department of Computer Science and Institute of Computational and Theoretical Studies Hong Kong Baptist University, Hong Kong SAR, China

2013

1/35

Outline

- Motivation
- Previous Work
- Objective
- 2 Object-cluster Similarity Metric
 - Clustering Task
 - Similarity Metric for Mixed Data
- Iterative Clustering Algorithm
 - Experiments
 - Evaluation Criteria
 - Performance on Mixed Data Sets
 - Performance on Categorical Data Sets
- 5 Conclusion

6

Acknowledgment

Introduction	Object-cluster Similarity Metric	Iterative Clustering Algorithm	Experiments	Conclusion	Acknowledgment
Outlin	e				
 Intro M F C 	oduction Activation Previous Work Objective				
 2 Obje 0 Control 0 State 	ect-cluster Similari Clustering Task Similarity Metric for	ty Metric Mixed Data			
 3 Itera 4 Exp • E • F • F 	ative Clustering Alg eriments Evaluation Criteria Performance on Mix Performance on Ca	orithm and Data Sets tegorical Data Sets	S		
5 Cor 6 Ack	iclusion nowledgment			a =	

Introduction •••••	Object-cluster Similarity Metric	Iterative Clustering Algorithm	Experiments 000000	Conclusion	Acknowledgment			
Motivation								
Clustering and Attribute								

Clustering:

- A widely utilized technique in variant scientific areas;
- The main task is to discover the natural group structure of objects represented by numerical or categorical attributes (*Michalski et al., 1998*).

Attribute:

- An attribute is a property or characteristic of an object;
- Each object is described by a collection of attributes;
- There exists two different types of attributes:
 - Numerical attributes: can be ordered by numbers;
 - *Categorical attributes:* cannot be ordered by their values, but can be separated into groups.

< □ > < □ > < □ > < □ >

Motivation

An Example: Diagnostic Records of Patients

UCI Heart Disease Data set: contains 8 categorical and 5 numerical attributes.

Attribute	Descriptor	Property	Туре
Age		continuous	numerical
Sex	{F, M}	discrete	categorical
Chest pain type	{typical angina, atypical angina,}	discrete	categorical
Resting blood pressure		continuous	numerical
Serum cholestoral		continuous	numerical
Fasting blood sugar	$\{> 120mg/dl, \le 120mg/dl\}$	discrete	categorical
Resting electrocardiographic	{type I, type II, type III}	discrete	categorical
Maximum heart rate		continuous	numerical
Exercise induced angina	{yes, no}	discrete	categorical
ST depression		continuous	numerical
Slope of ST segment	{upsloping, flat, downsloping}	discrete	categorical
CA		continuous	numerical
THAL	{normal, fixed defect, reversable defect}	discrete	categorical

Introduction	Object-cluster Similarity Metric	Iterative Clustering Algorithm	Experiments 000000	Conclusion	Acknowledgment
Motivation					
Proble	em				

- Traditional clustering methods often concentrate on purely numerical data only.
- There exists an awkward gap between the similarity metrics for categorical and numerical data.
- Transforming the categorical values into numerical ones will ignore the similarity information embedded in the categorical values and cannot faithfully reveal the similarity structure of the data sets (*Hsu, TNN'2006*).

It is desirable to solve this problem by finding a unified similarity metric for categorical and numerical attributes.

Introduction	Object-cluster Similarity Metric	Iterative Clustering Algorithm	Experiments	Conclusion	Acknowledgment
Previo	ous Work				

Roughly, the existing approaches dealing with categorical attributes in clustering analysis can be summarized into the four categories:

- Methods based on the perspective of similarity
 - Similarity Based Agglomerative Clustering (SBAC) algorithm (Li and Biswas, TKDE'02)
- Methods based on graph partitioning
 - CLICKS algorithm (Zaki and Peters, ICDE'2005)
- Entropy-based methods
 - COOLCAT algorithm (Barbara et al., CIKM'2002)
- Approaches that attempt to give a distance metric for categorical values
 - K-prototype algorithm (Huang, PAKDD'97)

- Give a unified similarity metric which can be simply applied to the data with categorical, numerical, and mixed attributes;
- Design an efficient clustering algorithm which is applicable to the three types of data: numerical, categorical, and mixed data.

Intro 000	duction	Object-cluster Similarity Metr	c Iterative Clustering Algorithm	Experiments	Conclusion	Acknowledgmer
0	utlin	е				
 2 3 4 5 	Intro N P C Obje C S Itera Exp P P P Con	oduction Notivation Previous Work Objective ect-cluster Simila Clustering Task Similarity Metric for ative Clustering A eriments Evaluation Criteria Performance on M Performance on C	rity Metric or Mixed Data Igorithm I lixed Data Sets ategorical Data Set	S		

2

イロト イヨト イヨト イヨト

Clustering a set of *N* objects, $\{x_1, x_2, ..., x_N\}$, into *k* different clusters, denoted as $C_1, C_2, ..., C_k$, can be formulated to find the optimal \mathbf{Q}^* via

$$\mathbf{Q}^* = \arg\max_{\mathbf{Q}} F(\mathbf{Q}) = \arg\max_{\mathbf{Q}} \left[\sum_{j=1}^k \sum_{i=1}^N q_{ij} s(\mathbf{x}_i, C_j)\right], \tag{1}$$

where $s(\mathbf{x}_i, C_j)$ is the similarity between object \mathbf{x}_i and Cluster C_j , and $\mathbf{Q} = (q_{ij})$ is an $N \times k$ partition matrix satisfying

$$\sum_{j=1}^{k} q_{ij} = 1, \ 0 < \sum_{i=1}^{N} q_{ij} < N, \text{ and } q_{ij} \in [0,1].$$
 (2)

Evidently, the desired clusters can be obtained as long as the metric of object-cluster similarity is determined.

Introduction	Object-cluster Similarity Metric	Iterative Clustering Algorithm	Experiments 000000	Conclusion	Acknowledgment
Similarity Met	ric for Mixed Data				
Repre	esentation of M	lixed Data			

Suppose the mixed data \mathbf{x}_i with d different attributes consists of d_c categorical attributes and d_u numerical attributes ($d_c + d_u = d$).

 \mathbf{x}_i can be denoted as $[\mathbf{x}_i^{cT}, \mathbf{x}_i^{uT}]^T$ with $\mathbf{x}_i^c = (x_{i1}^c, x_{i2}^c, \dots, x_{id_c}^c)^T$ and $\mathbf{x}_i^u = (x_{i1}^u, x_{i2}^u, \dots, x_{id_u}^u)^T$.

Here, we have:

- x_{ir}^u $(r = 1, 2, \dots, d_u)$ belonging to **R**;
- x_{ir}^c $(r = 1, 2, ..., d_c)$ belonging to $dom(A_r)$, where $dom(A_r)$ contains all possible values that can be chosen by categorical attribute A_r .
- Specially, $dom(A_r)$ with m_r elements can be represented with $dom(A_r) = \{a_{r1}, a_{r2}, \dots, a_{rm_r}\}.$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Observations: In clustering analysis, numerical attributes are usually treated as a whole vector while the categorical attributes are investigated individually.

Definition: Let the object-cluster similarity $s(\mathbf{x}_i, C_j)$ be the average of the similarity calculated based on each attribute, we will then have

$$s(\mathbf{x}_{i}, C_{j}) = \frac{1}{d} s(x_{i1}^{c}, C_{j}) + \frac{1}{d} s(x_{i2}^{c}, C_{j}) + \dots + \frac{1}{d} s(x_{id_{c}}^{c}, C_{j}) + \frac{d_{u}}{d} s(\mathbf{x}_{i}^{u}, C_{j})$$
$$= \frac{1}{d} \sum_{r=1}^{d_{c}} s(x_{ir}^{c}, C_{j}) + \frac{d_{u}}{d} s(\mathbf{x}_{i}^{u}, C_{j}).$$
(3)

Here, the similarity between each numerical attribute and the cluster C_j is replaced with the similarity between the cluster and the whole numerical vector \mathbf{x}_i^u .

< 回 > < 回 > < 回 >

If we denote the similarity between \mathbf{x}_i^c and C_j as $s(\mathbf{x}_i^c, C_j)$, we can get

$$s(\mathbf{x}_{i}^{c}, C_{j}) = \frac{1}{d_{c}} \sum_{r=1}^{d_{c}} s(x_{ir}^{c}, C_{j}) = \sum_{r=1}^{d_{c}} \frac{1}{d_{c}} s(x_{ir}^{c}, C_{j}).$$
 (4)

Then, previous Eq. (3) can be further rewritten as

$$s(\mathbf{x}_i, C_j) = \frac{d_c}{d} s(\mathbf{x}_i^c, C_j) + \frac{d_u}{d} s(\mathbf{x}_i^u, C_j),$$
(5)

Subsequently, the object-cluster similarity metric can be obtained based on the definitions of $s(\mathbf{x}_i^c, C_j)$ and $s(\mathbf{x}_i^u, C_j)$.

Introduction	Object-cluster Similarity Metric	Iterative Clustering Algorithm	Experiments	Conclusion	Acknowledgment
	00000000				

Similarity Metric for Mixed Data

Similarity Metric for Categorical Attributes (I)

Taking into account the unequal importance of different categorical attributes for clustering analysis, the computation of $s(\mathbf{x}_i^c, C_j)$ should be further modified with

$$s(\mathbf{x}_{i}^{c}, C_{j}) = \sum_{r=1}^{d_{c}} w_{r} s(x_{ir}^{c}, C_{j}),$$
(6)

where w_r is the weight of categorical attribute A_r satisfying $0 \le w_r \le 1$ and $\sum_{r=1}^{d_c} w_r = 1$.

That is, the object-cluster similarity for categorical part is the *weighted* summation of the similarity between the cluster and each attribute value.

Similarity Metric for Mixed Data

Similarity Metric for Categorical Attributes (II)

Definition 1

The similarity between a categorical attribute value x_{ir}^c and cluster C_j is defined as:

$$s(x_{ir}^c, C_j) = \frac{\sigma_{A_r = x_{ir}^c}(C_j)}{\sigma_{A_r \neq NULL}(C_j)},\tag{7}$$

where $\sigma_{A_r=x_{ir}^c}(C_j)$ counts the number of objects in cluster C_j that have the value x_{ir}^c for attribute A_r , NULL refers to empty.

Therefore, the object-cluster similarity for categorical part is calculated by

$$s(\mathbf{x}_{i}^{c}, C_{j}) = \sum_{r=1}^{d_{c}} w_{r} s(x_{ir}^{c}, C_{j}) = \sum_{r=1}^{d_{c}} w_{r} \frac{\sigma_{A_{r}=x_{ir}^{c}}(C_{j})}{\sigma_{A_{r}\neq NULL}(C_{j})}.$$
(8)

イロン イ理 とく ヨン イヨン

Introduction	Object-cluster Similarity Metric	Iterative Clustering Algorithm	Experiments	Conclusion	Acknowledgment
	0000000000				

Similarity Metric for Mixed Data

Calculation of Categorical Attribute Weights

From the view point of information theory, the **importance** of any categorical attribute A_r can be estimated by

$$H_{A_r} = -\frac{1}{m_r} \sum_{t=1}^{m_r} p(a_{rt}) \log p(a_{rt}) \text{ with } p(a_{rt}) = \frac{\sigma_{A_r = a_{rt}}(X)}{\sigma_{A_r \neq NULL}(X)},$$
(9)

where $a_{rt} \in dom(A_r)$, X is the whole data set and m_r is the number of values can be chosen by A_r .

The weight of each attribute is then computed as

$$w_r = H_{A_r} / \sum_{t=1}^{d_c} H_{A_t}.$$
 (10)

Introduction	Object-cluster Similarity Metric	Iterative Clustering Algorithm	Experiments	Conclusion	Acknowledgment
Similarity Metr	ic for Mixed Data				

Similarity Metric for Numerical Attributes (I)

 It is a universal law that the distance and perceived similarity between numerical vectors are related via an exponential function as follows:

$$s(\mathbf{x}_A, \mathbf{x}_B) = \exp(-Dis(\mathbf{x}_A, \mathbf{x}_B)), \tag{11}$$

where *Dis* stands for a distance measure.

 Moreover, to avoid the influence of different magnitudes of distances, we can further use proportional distance instead of absolute distance. Iterative Clustering Algorithm

Experiments C

Conclusion Acknowledgment

Similarity Metric for Mixed Data

Similarity Metric for Numerical Attributes (II)

Definition 2

The object-cluster similarity between numerical vector \mathbf{x}_i^u and cluster C_j is given by

$$s(\mathbf{x}_{i}^{u}, C_{j}) = \exp\left(-\frac{Dis(\mathbf{x}_{i}^{u}, \mathbf{c}_{j})}{\sum\limits_{t=1}^{k} Dis(\mathbf{x}_{i}^{u}, \mathbf{c}_{t})}\right),$$
(12)

where c_j is the center of all numerical vectors in cluster C_j .

In practice, different distance metrics can be utilized to calculate $Dis(\mathbf{x}_i^u, \mathbf{c}_j)$.

イロト イポト イヨト イヨト

Introduction 00000	Object-cluster Similarity Metric	Iterative Clustering Algorithm	Experiments 000000	Conclusion	Acknowledgment				
Similarity Met	Similarity Metric for Mixed Data								
Calcu	Calculation of Object-cluster Similarity								

According to previous descriptions, the object-cluster similarity metric for mixed data is given by

$$s(\mathbf{x}_i, C_j) = \frac{d_c}{d} \sum_{r=1}^{d_c} \left(\frac{H_{A_r}}{\sum\limits_{t=1}^{d_c} H_{A_t}} \cdot \frac{\sigma_{A_r = \mathbf{x}_{ir}^c}(C_j)}{\sigma_{A_r \neq NULL}(C_j)} \right) + \frac{d_u}{d} \exp\left(-\frac{Dis(\mathbf{x}_i^u, \mathbf{c}_j)}{\sum\limits_{t=1}^{k} Dis(\mathbf{x}_i^u, \mathbf{c}_t)} \right) + \frac{d_u}{d} \exp\left(-\frac{Dis(\mathbf{x}_i^u, \mathbf{c}_j)}{\sum\limits_{t=1}^{k} Dis(\mathbf{x}_j^u, \mathbf{c}_j)} \right) + \frac{d_u}{d} \exp\left(-\frac{Dis(\mathbf{x}_i^u, \mathbf{c}_j)}{\sum\limits_{t=1}^{k} Dis(\mathbf{x}_j^u, \mathbf{c}_j)} \right) + \frac{d_u}{d} \exp\left(-\frac{Dis(\mathbf{x}_i^u, \mathbf{c}_j)}{\sum\limits_{t=1}^{k} Dis(\mathbf{x}_j^u, \mathbf{c}_j)} \right) + \frac{d_u}{d} \exp\left(-\frac{Dis(\mathbf{x}_j^u, \mathbf{c}_j)}{\sum\limits_{$$

where i = 1, 2, ..., N, j = 1, 2, ..., k.

→ ∃ →

Intro 000	oduction	Object-cluster Similarity Metric	Iterative Clustering Algorithm	Experiments	Conclusion	Acknowledgmen
0	utlin	е				
2	 Intro M P C Obja C S 	oduction Activation Previous Work Objective ect-cluster Similarit Clustering Task Similarity Metric for	ty Metric Mixed Data			
3	ltera	ative Clustering Alg	orithm			
4	● E ● P ● P ● P ● Con	eriments Evaluation Criteria Performance on Mix Performance on Cat Inclusion	ted Data Sets tegorical Data Set	S		
		nowieuginent				≣। ≡ • 0 <

- We concentrate on hard partition only, i.e., $q_{ij} \in \{0, 1\}$.
- Given a set of N objects, the optimal $\mathbf{Q}^* = \{q_{ij}^*\}$ in Eq. (1) can be given by

$$q_{ij}^* = \begin{cases} 1, \text{ if } s(\mathbf{x}_i, C_j) \ge s(\mathbf{x}_i, C_r), 1 \le r \le k, \\ 0, \text{ otherwise.} \end{cases}$$
(14)

 Similar to the learning procedure of k-means, an iterative algorithm can be conducted to implement the clustering analysis.

Introduction	Object-cluster Similarity Metric	Iterative Clustering Algorithm	Experiments 000000	Conclusion	Acknowledgment
OCIL	Algorithm				

Iterative clustering learning based on object-cluster similarity metric:

Require: data set $X = {x_1, x_2, \dots, x_N}$, number of clusters k **Ensure:** cluster label $Y = \{y_1, y_2, \ldots, y_N\}$ 1: Calculate the importance of each categorical attribute if applicable 2: Set $Y = \{0, 0, \dots, 0\}$ and randomly select k initial objects, one for each cluster 3: repeat 4: Initialize noChange = true5: for i = 1 to N do $y_i^{(new)} = \arg \max_{i \in \{1,\dots,k\}} [s(\mathbf{x}_i, C_j)]$ 6: if $y_i^{(new)} \neq y_i^{(old)}$ then 7: 8: noChange = false9: Update the information of clusters $C_{u_{i}^{(new)}}$ and $C_{u_{i}^{(old)}}$, including the frequency of each categorical value and the centroid of numerical vectors 10: end if 11: end for 12: until noChange is true 13: return Y

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction	Object-cluster Similarity Metric	Iterative Clustering Algorithm	Experiments	Conclusion	Acknowled
Outli	ne				
 Intr Intr Ob Ob Iter Iter Iter Ex Oc Co 	roduction Motivation Previous Work Objective ject-cluster Similari Clustering Task Similarity Metric for rative Clustering Alg periments Evaluation Criteria Performance on Mix Performance on Ca nclusion	ty Metric Mixed Data gorithm ked Data Sets tegorical Data Set	S		

イロト イヨト イヨト イヨト

• Clustering Accuracy (ACC):

$$ACC = \frac{\sum_{i=1}^{N} \delta(c_i, map(r_i))}{N},$$

where $map(r_i)$ maps the obtained cluster label r_i to the equivalent label from the data corpus by using the Kuhn-Munkres algorithm.

• Clustering Error Rate:

.

$$e = 1 - ACC$$

Introduction	Object-cluster Similarity Metric	Iterative Clustering Algorithm	Experiments	Conclusion	Acknowledgment	
Performance on Mixed Data Sets						
Mixed	Data Sets					

Table 1 :	Statistics	of mixed	data sets
-----------	------------	----------	-----------

Data set	Instance	Attribute ($d_c + d_u$)	Class
Statlog Heart	270	7 + 6	2
Heart Disease	303	7 + 6	2
Credit Approval	653	9+6	2
German Credit	1000	13 + 7	2
Dermatology	366	33 + 1	6
Adult	30162	8 + 6	2

イロト イヨト イヨト イヨト

Iterative Clustering Algorithm

Experiments Conclusion Acknowledgment

Performance on Mixed Data Sets

Clustering Errors on Mixed Data Sets

 Table 2 : Clustering errors of OCIL on mixed data sets in comparison with k-prototype and k-means

Data set	K-means	K-prototype	OCIL
Statlog	0.4047±0.0071	0.2306±0.0821	0.1716±0.0065
Heart	0.4224±0.0131	$0.2280{\pm}0.0903$	0.1644±0.0030
Credit	0.4487± 0.0016	$0.2619{\pm}0.0976$	0.2519 ±0.0966
German	$0.3290{\pm}0.0014$	0.3289± 0.0006	0.3057±0.0007
Dermatology	0.7006± 0.0216	$0.6903{\pm}0.0255$	0.3051±0.0896
Adult	0.3869± 0.0067	0.3855±0.0143	0.3079 ±0.0305

Iterative Clustering Algorithm

Experiments Conclusion Acknowledgment

Performance on Mixed Data Sets

Comparison of Convergence Rate

Table 3 : Comparison of average convergent time and iterations betweenk-prototype and OCIL

Data act	Time		Iterations		
Dala Sel	K-prototype	OCIL	K-prototype	OCIL	
Statlog	0.0519s	0.0516 s	3.09	3.07	
Heart	0.0639s	0.0576 s	3.54	3.02	
Credit	0.1323 s	0.1625s	3.18	4.26	
German	0.2999s	0.2023 s	5.29	3.15	
Dermatol	0.3674s	0.1888 s	7.27	4.32	
Adult	15.2795s	9.6774 s	10.93	6.78	

Introduction	Object-cluster Similarity Metric	Iterative Clustering Algorithm	Experiments ○○○○●○	Conclusion	Acknowledgment	
Performance on Categorical Data Sets						
Categorical Data Sets						

Table 4 : Statistics of categorical data sets

Data set	Instance	Attribute	Class
Soybean	47	35	4
Breast	699	9	2
Vote	435	16	2
Zoo	101	16	7

Performance on Categorical Data Sets

Clustering Errors on Categorical Data Sets

 Table 5 : Comparison of clustering errors obtained by three different methods on categorical data sets

Data set	H's k-modes	N's k-modes	OCIL
Soybean	0.1691±0.1521	0.0964 ±0.1404	0.1017± 0.1380
Breast	0.1655±0.1528	$0.1356{\pm}0.0016$	0.0934±0.0009
Vote	$0.1387{\pm}0.0066$	0.1345±0.0031	0.1213±0.0010
Zoo	$0.2873{\pm}0.1083$	0.2730± 0.0818	0.2681±0.0906

H's k-modes: original k-modes algorithm (Huang, SIGMOD'97); N's k-modes: k-modes algorithm with Ng's dissimilarity metric (Ng et al., TPAMI'07);

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction	Dispect-cluster Similarity Metric	Iterative Clustering Algorithm	Experiments 000000	Conclusion	Acknowledgmen
Outli	ne				
1 Int • •	roduction Motivation Previous Work Objective				
2 Ok	Clustering Task Similarity Metric for	ty Metric Mixed Data			
3 Ite 4 Ex	rative Clustering Alg periments Evaluation Criteria	jorithm			
• • 5 Co	Performance on Mix Performance on Ca onclusion	ked Data Sets tegorical Data Set	S		
6 Ac	knowledgment		< □ ▶ < □	⊒≻∢≣≻∢	E> E ��

Introduction	Object-cluster Similarity Metric	Iterative Clustering Algorithm	Experiments 000000	Conclusion	Acknowledgment
Concl	usion				

- A general clustering framework based on object-cluster similarity has been proposed.
- A unified similarity metric for both categorical and numerical attributes has been presented.
- An iterative algorithm which is applicable to clustering analysis on various data types has been introduced.
- The advantages of the proposed method have been experimentally demonstrated in comparison with the existing counterparts

Introduction	Object-cluster Similarity Metric	Iterative Clustering Algorithm	Experiments	Conclusion	Acknowledgment
Outlin	٩				
 Intro M F 	oduction Activation Previous Work				
 C Obj C C S 	Dbjective ect-cluster Similarit Clustering Task Similarity Metric for	ty Metric Mixed Data			
 3 Itera 4 Exp • E • F 	ative Clustering Alg periments Evaluation Criteria Performance on Mix	orithm red Data Sets			
FCorAck	rertormance on Ca nclusion nowledgment	tegorical Data Set	S	╗ → < 글 → <	E → E ∽Q@

Introduction	Object-cluster Similarity Metric	Iterative Clustering Algorithm	Experiments	Conclusion	Acknowledgment
Ackno	owledgment				

- Collaborative Graduate Program in Design, Kyoto University;
- Department of Computer Science, Hong Kong Baptist University.

4 A N

- A 🖻 🕨

Introduction	Object-cluster Similarity Metric	Iterative Clustering Algorithm	Experiments	Conclusion	Acknowledgment
Refer	ences				

- 1. Michalski, R.S., Bratko, I., Kubat, M.: Machine learning and data mining: methods and applications. Wiley, New York (1998)
- Hsu, C.C.: Generalizing self-organizing map for categorical data. IEEE Transactions on Neural Networks 17(2) (March 2006) 294–304
- Li, C., Biswas, G.: Unsupervised learning with mixed numeric and nominal data. IEEE Transactions on Knowledge and Data Engineering 14(4)(July/August 2002) 673–690
- Zaki, M.J., Peters, M.: Click: Mining subspace clusters in categorical data via k-partite maximal cliques. In: Proceedings of the 21st International Conference on Data Engineering. (2005) 355–356
- Barbara, D., Couto, J., Li, Y.: Coolcat: An entropy-based algorithm for categorical clustering. In: Proceedings of the 11th ACM Conference on Information and Knowledge Management. (2002) 582–589
- Huang, Z.: Clustering large data sets with mixed numeric and categorical values. In: Proceedings of the First Pacific-Asia Conference on Knowledge Discovery and Data Mining. (1997) 21–24
- Huang, Z.: A fast clustering algorithm to cluster very large categorical data sets in data mining. In: Proceedings of the SIGMOD Workshop on Research Issues on Data Mining and Know ledge Discovery. (1997) 1–8
- Ng, M.K., Li, M.J., Huang, J.Z., He, Z.: On the impact of dissimilarity measure in k-modes clustering algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(3) (2007) 503–507

Introduction	Object-cluster Similarity Metric	Iterative Clustering Algorithm	Experiments	Conclusion	Acknowledgment

Thank You!