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Gene Expression Data

Generally, a gene expression data set can be represented by a
real-valued expression matrix M = [wij ]m×n.

wij : measured expression level of gene i in sample j.
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Clustering Analysis of Gene Expression Data

Clustering analysis is very helpful to understand gene function, gene
regulation, cellular processes, and subtypes of cells.

For example:

Coexpressed genes can be clustered together with similar cellular
functions;
Coexpressed genes in the same cluster are likely to be involved in
the same cellular processes;
A strong correlation of expression patterns between coexpressed
genes indicates coregulation;
Clustering different samples based on the expression profiles may
reveal subcell types.
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Categories of Gene Expression Data Clustering

For gene expression data, it is meaningful to cluster both genes and
samples (Jiang et al., TKDE’2004).

Gene-based clustering
- Genes −→ Objects; Samples −→ Features
- Coexpressed genes can be grouped in clusters

Sample-based clustering
- Samples −→ Objects; Genes −→ Features
- Each group may correspond to some macroscopic phenotype

Subspace clustering
- Genes and samples are treated symmetrically
- Capture clusters formed by a subset of genes across a subset of

samples

The three categories of clustering analysis face different challenges
and therefore different computational strategies should be adopted.
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Gene-based Clustering

Some conventional clustering algorithms can be utilized, such as
k-means, SOM, hierarchical clustering, and model-based clustering.

Challenges:
The clustering algorithm should depend as little as possible on
prior knowledge.
- For example, a clustering algorithm which can accurately estimate the
number of clusters will be more favored.

Gene expression data often contains a huge amount of noise.
Clusters of gene expression data may be highly intersected.
Sometimes, graphical representation of the cluster structure is
also needed.
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Gene-based Clustering

Some conventional clustering algorithms can be utilized, such as
k-means, SOM, hierarchical clustering, and model-based clustering.

Challenges:
The clustering algorithm should depend as little as possible on
prior knowledge.
- For example, a clustering algorithm which can accurately estimate the
number of clusters will be more favored.

♣ What we focus on.
♣ Objective: exploring a novel learning model which can

automatically estimate cluster number during clustering analysis.
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Previous Work

Previous work on cluster number estimation can be grouped into two
lines:

1 Conduct clustering with traditional algorithms and choose the
number of clusters based on some statistic criteria.
- e.g., X-means (Pelleg and Moore, ICML’2000) and G-means (Hamerly and Elkan,

NIPS’2003)

2 Explore new clustering algorithms which can conduct clustering
analysis without knowing the true number of clusters.

Non-center-based algorithms
- e.g., Affinity Propagation method (Frey and Dueck, Science’2007), Data
Spectroscopic clustering (Shi et al., AS’2009), and CSPV algorithm (Lu and Wan,
PR’2012)

Center-based algorithms
- e.g., RPCCL (Cheung, TKDE’2005), DSRPCL (Ma and Wang, TSMC-B’2006), and
CoRe (Bacciu and Starita, TNN’2008)
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Definition of the Winner

Suppose N inputs, x1,x2, ...,xN , come from k∗ unknown clusters,
and k (k ≥ k∗) seed points m1,m2, ...,mk are randomly initialized.

Given an input xt each time, the winner among k seed points is
determined by

I(j|xt) =

{
1, if j = c = argmin1≤i≤k γi||xt −mi||2,
0, otherwise,

(1)

with the relative winning frequency γi of mi defined as

γi =
ni∑k
j=1 nj

, (2)

where ni is the winning times of mi in the past.
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Territory of the Winner

Definition 1
The area centered at the winner mc with the radius ||mc − xt|| is
regarded as the territory of mc.

Any other seed points which
have intruded into this territory
will either cooperate with the
winner or be penalized by it.

Hong Jia and Yiu-ming Cheung (HKBU) Clustering without Knowing Cluster Number 2013 12 / 31



Reliability of the Winning Seed Point

In social life, people always prefer to cooperate with the person
who has higher reliability.

Inspired by this phenomenon, we assign a confidence coefficient,
denoted as Ec (Ec ∈ [0, 1]), to the winner mc to measure its
reliability.

Since more successful experience usually results in higher
reliability, the confidence coefficient Ec of mc can be given by

Ec = min(1, η · nc). (3)

Where η is a pre-specified small positive learning rate and nc
denotes the winning times of mc in the past.
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Determining the Cooperating Team

The number of cooperators owned by a winner is determined by
its confidence coefficient Ec.

Suppose there are q seed points which have intruded into the
winner’s territory, then the number of cooperators qw can be
calculated by

qw = bq · Ecc = bq ·min(1, η · nc)c , (4)

where b·c denotes the floor function.

In this learning approach, the competitor nearest to the winner
has the priority to be a cooperator.
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Penalized Seed Points

All of the other non-cooperating intruders in the winner’s territory
will be penalized.

The number of penalized seed points, denoted as qp, is calculated
by

qp =q − qu
=q − bq ·min(1, η · nc)c
= dq ·max(0, 1− η · nc)e ,

(5)

where d·e means the ceiling function.

At the initial stage, the winning times of each seed point are very
few, then we have qu = 0 and qp = q.
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Updating Formula

After determining the cooperating team and penalized team at
time t, each cooperator, denoted as mu, will be updated by

m
(t)
u = m

(t−1)
u + η

‖m(t−1)
c −xt‖

max
(∥∥∥m(t−1)

c −xt

∥∥∥,∥∥∥m(t−1)
u −xt

∥∥∥) (xt −m
(t−1)
u ). (6)

The other penalized seed points in the winner’s territory, denoted
as mp, will be penalized by

m
(t)
p = m

(t−1)
p − η ‖m

(t−1)
c −xt‖∥∥∥m(t−1)
p −xt

∥∥∥ (xt −m
(t−1)
p ). (7)
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General Process of the Competitive Learning

During each learning epoch:
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CPCL Algorithm

Step1: Initialize k seed points. Set n(0)
j = 1 with j = 1, 2, . . . , k, and t = 1.

Step2: Determine the winner unit m(t−1)
c . Let Sc be the set of seed points fallen into

the territory of m(t−1)
c . That is, let Sc = ∅, and then we span Sc by

Sc = Sc ∪
{
m

(t−1)
j |

∥∥∥m(t−1)
c −m

(t−1)
j

∥∥∥ ≤ ∥∥∥m(t−1)
c − xt

∥∥∥} , j 6= c. (8)

Step4: Sort the units in Sc based on the distance between each unit to the winner
m

(t−1)
c . We denote the sorted units as: m

′(t−1)
1 , m

′(t−1)
2 , . . . , m

′(t−1)
q , with∥∥∥∥m′(t−1)

1 −m
(t−1)
c

∥∥∥∥ ≤ ∥∥∥∥m′(t−1)
2 −m

(t−1)
c

∥∥∥∥ ≤ · · · ≤ ∥∥∥∥m′(t−1)
q −m

(t−1)
c

∥∥∥∥ . (9)

Step5: Select a subset Su of Sc to form a cooperating team of m(t−1)
c , where

Su =

{
m
′(t−1)
1 ,m

′(t−1)
2 , . . . ,m

′(t−1)
qu

}

and qu is calculated by Eq. (4). Then update all members in Su by Eq. (6).
Step6: Let Sp = Sc − Su, then we penalize all seed points in Sp by Eq. (7).
Step7: Update the winner mc by

m
(t)
c = m

(t−1)
c + η · (xt −m

(t−1)
c ). (10)

Step8: Update nc by n
(t)
c = n

(t−1)
c + 1, and increase t by 1.
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Evaluation Criteria

Partition Quality (PQ):

PQ =


∑k∗
i=1

∑k′
j=1 [p(i,j)

2·(p(i,j)/p(j))]∑k∗
i=1 p(i)

2
, if k′ > 1,

0, otherwise,

where k∗ is the true number of classes and k′ is the cluster number learned by
the algorithm. The term p(i, j) calculates the frequency-based probability that a
data point is labeled i by the true label and labeled j by the obtained label.

Rand Index (RI):

RI =
TP + TN

TP + FP + FN + TN
.
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Utilized Data Sets

Seeds
This data set has 210 instances with 7 attributes. All the instances
are distributed into three different varieties of wheat: Kama, Rosa
and Canadian.

Wisconsin Diagnostic Breast Cancer (WDBC)
This data set contains 569 instances described by 30 features.
357 instances of them have the diagnosis of benign while the
other 212 samples are regarded as malignant.

Hong Jia and Yiu-ming Cheung (HKBU) Clustering without Knowing Cluster Number 2013 21 / 31



Clustering Results on Seeds Data

Table 1: Clustering Results on the Seeds Data Set (k∗ = 3)

k Methods #Clusters PQ RI Time (#Epochs)
− DaSpec 2 0.5968 0.7375 0.6271 (1)
− CSPV 2 0.5456 0.7149 0.11 (1)

4

DSRPCL1 4±0.0 0.6623 0.8628 0.36 (94.85)
DSRPCL2 3.95±0.22 0.6377 0.8565 0.20 (47.7)

RPCCL 2.95±0.22 0.6849 0.8499 0.91 (100)
CoRe 2.1±0.31 0.5794 0.7593 1.04 (19.5)
CCCL 2.85±0.81 0.6273 0.8095 0.71 (77.35)
CPCL 3.25±0.55 0.6922 0.8635 0.56 (49.5)

10

DSRPCL1 8.25±1.12 0.3146 0.7673 1.61 (187.2)
DSRPCL2 10±0.0 0.2748 0.7546 0.65 (84.45)

RPCCL 8.85±1.18 0.3718 0.7763 9.06 (500)
CoRe 2.45±0.51 0.6385 0.8028 2.13 (28.75)
CCCL 3.5±0.82 0.6536 0.8442 3.68 (189.5)
CPCL 3.25±0.58 0.7302 0.8840 2.55 (110.9)

20

DSRPCL1 17.05±1.57 0.2020 0.7311 4.87 (296.15)
DSRPCL2 19.95±0.22 0.1620 0.7182 2.07 (163.1)

RPCCL 18.3±1.03 0.1783 0.7200 33.72 (1000)
CoRe 2.7±0.47 0.6738 0.8342 3.69 (39.7)
CCCL 3.7±0.92 0.6437 0.8329 13.71 (368.5)
CPCL 3.1±0.45 0.7332 0.8771 7.33 (168.3)
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Clustering Results on WDBC Data

Table 2: Clustering Results on the WDBC Data Set (k∗ = 2)

k Methods #Clusters PQ RI Time (#Epochs)
− DaSpec 1 0 0.5316 5.18 (1)
− CSPV 2 0.5602 0.5335 0.7493 (1)

3

DSRPCL1 3±0.0 0.6248 0.7553 0.47 (55.5)
DSRPCL2 3±0.0 0.6194 0.7521 0.15 (14.25)

RPCCL 1.85±0.36 0.4781 0.5553 2.11 (100)
CoRe 2.15±0.93 0.2664 0.5964 8.03 (26.2)
CCCL 2.15±0.36 0.7573 0.8321 0.72 (23.5)
CPCL 2±0.0 0.7725 0.8415 0.69 (20.4)

10

DSRPCL1 9.7±0.47 0.2111 0.5774 5.46 (225.8)
DSRPCL2 9.9±0.31 0.2013 0.5723 1.35 (62.95)

RPCCL 5.9±2.05 0.5136 0.6984 26.29 (500)
CoRe 2.6±1.31 0.2931 0.5719 23.51 (61.20)
CCCL 1.95±0.22 0.7215 0.8177 3.02 (47.15)
CPCL 2±0.0 0.7551 0.8298 2.63 (39.35)

20

DSRPCL1 19.95±0.22 0.1228 0.5311 20.99 (457.3)
DSRPCL2 20±0.0 0.1098 0.5243 3.3992 (95.6)

RPCCL 15.25±1.86 0.1925 0.5629 96.67 (1000)
CoRe 3.1±0.91 0.3290 0.6126 49.51 (107.15)
CCCL 1.85±0.36 0.7267 0.8211 9.62 (82.05)
CPCL 2.05±0.22 0.7582 0.8306 7.97 (63.7)
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Gene Expression Data Set

This data was published by Cho et al. in 1998. The data set we used
was comprised of 384 genes which had expression levels peaking at
different time points corresponding to the five phases of the cell cycle.

Number of clusters:
We arbitrarily initialized 20 seed points in the running of the CPCL.
After 10 trials, the average and most frequent number of clusters
obtained by CPCL are 4.9 and 5, respectively. That is, the true cluster
number has been identified.
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Clustering Errors on the Gene Expression Data

Table 3: Clustering Errors of Different Methods

Methods

Division phase CPCL M1 M2 M3
FP FN FP FN FP FN FP FN

Early G1 (67 genes) 25 16 50 12 21 21 38 10
Late G1 (135 genes) 37 23 28 40 24 35 43 10

S (75 genes) 18 47 33 49 37 36 72 18
G2 (52 genes) 11 30 28 41 18 29 46 5
M (55 genes) 28 3 38 42 19 8 47 2
Summation 119 119 177 184 119 129 246 45

Total Error (FP + FN) 238 361 248 291

M1: EM algorithm based on BIC (Yeung et al., Bioinformatics’2001);
M2: supervised clustering method (Qu and Xu, Bioinformatics’2004);
M3: support vector machines algorithm (Brown et al., NAS’2000).
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The Five Groups of Genes Formed by CPCL Algorithm
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Conclusion

To conduct clustering without knowing cluster number, a novel
competitive learning method has been studied.

The presented algorithm performs cooperation and penalization
mechanisms simultaneously in a single competitive learning process.

This new algorithm features the good estimate of cluster centers and the
robust performance against the initialization of seed points.
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Thank You!
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